holomorphically convex - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:     

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

holomorphically convex - translation to ρωσικά

FUNCTIONS OF MULTIPLE VARIABLES WHICH ARE COMPLEX NUMBERS
The theory of analytic functions of several complex variables; Several complex variable; Two complex variables; Holomorph convex; Holomorphically convex; Holomorph-convex; Holomorphically convex hull; Polynomially convex hull; Reinhardt domain; Functions of several complex variables; Complex analysis in several variables; Logarithmically convex set; Several complex variables; Function theory of several complex variables; Idéal de domaines indéterminés; Multiple complex variables

holomorphically convex         

математика

голоморфно выпуклый

holomorphically convex hull         
голоморфно выпуклая оболочка
polynomially convex hull         
полиномиально выпуклая оболочка

Ορισμός

convex hull
<mathematics, graphics> For a set S in space, the smallest convex set containing S. In the plane, the convex hull can be visualized as the shape assumed by a rubber band that has been stretched around the set S and released to conform as closely as possible to S. (1997-08-03)

Βικιπαίδεια

Function of several complex variables

The theory of functions of several complex variables is the branch of mathematics dealing with complex-valued functions. The name of the field dealing with the properties of function of several complex variables is called several complex variables (and analytic space), that has become a common name for that whole field of study and Mathematics Subject Classification has, as a top-level heading. A function f : ( z 1 , z 2 , , z n ) f ( z 1 , z 2 , , z n ) {\displaystyle f:(z_{1},z_{2},\ldots ,z_{n})\rightarrow f(z_{1},z_{2},\ldots ,z_{n})} is n-tuples of complex numbers, classically studied on the complex coordinate space C n {\displaystyle \mathbb {C} ^{n}} .

As in complex analysis of functions of one variable, which is the case n = 1, the functions studied are holomorphic or complex analytic so that, locally, they are power series in the variables zi. Equivalently, they are locally uniform limits of polynomials; or locally square-integrable solutions to the n-dimensional Cauchy–Riemann equations. For one complex variable, every domain( D C {\displaystyle D\subset \mathbb {C} } ), is the domain of holomorphy of some function, in other words every domain has a function for which it is the domain of holomorphy. For several complex variables, this is not the case; there exist domains ( D C n ,   n 2 {\displaystyle D\subset \mathbb {C} ^{n},\ n\geq 2} ) that are not the domain of holomorphy of any function, and so is not always the domain of holomorphy, so the domain of holomorphy is one of the themes in this field. Patching the local data of meromorphic functions, i.e. the problem of creating a global meromorphic function from zeros and poles, is called the Cousin problem. Also, the interesting phenomena that occur in several complex variables are fundamentally important to the study of compact complex manifolds and complex projective varieties ( C P n {\displaystyle \mathbb {CP} ^{n}} ) and has a different flavour to complex analytic geometry in C n {\displaystyle \mathbb {C} ^{n}} or on Stein manifolds, these are much similar to study of algebraic varieties that is study of the algebraic geometry than complex analytic geometry.

Μετάφραση του &#39holomorphically convex&#39 σε Ρωσικά